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This week…

No maths, No code, Yes Engineering.

Just talk about the usefulness of SNN in 
object detection for Event Cameras. 



The background story
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Vision-based 
Autonomous 
navigation 

system

• Fast
• Accurate
• Energy efficient

Biologically 
inspired 

Event 
Camera

• Offers speed
• Energy efficient
• Robustness to 

lighting condition

Temporal 
Information

The 
answer utilises

Moving 
Objects

determines



Introduction and Summary
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The Proposed Algorithm
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A Spiking 
Neural 

Network

• Able to generates 
Spiking events

Separate 
events based 
on

• Asynchronous 
• Robust to camera noise
• Less energy overheads
• Surpass current event-based 

algorithm

Speed of 
moving 
objects

Object 
boundaries

To 
determine



Autonomous Navigation systems is an important research area
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Society of Automation Engineers (SAE) 
identified 6 levels of automation (0..5)

Level 5 being the 
highest (requires no 
human operator)

This paper works for level 1 and 
above (that is, the ability to detect 
and avoid obstacles)



Event Camera Vs Frame Camera
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• Event Camera captures light intensities for 
each pixel.

• Higher frequency
• Asynchronous. 
• Operates in high speed

• Capture photometric features at fixed 
interval.

• Canny Filter and YOLOv3 perform for 
frame camera but fail for Event 
cameras.



Temporal and Spatial analysis
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Leaky and Integrated 
Fire Model Temporal 

Characteristics
Spatial 

Characteristics

• The use of temporal information can differentiate 
objects via LIF.

• The output events (firing) generated when input 
events occur at a rate of higher frequency.

• Similar object have similar moving speed.

• Pixel of the same object are 
close together.

• Clustering in unsupervised. No 
labelling is required.

• Irrelevant to scenes.

Clustering



Related work and Methodology 
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Related works
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• There exists plenty algorithms for object detection for event camera such as [17], [19], [20]
• Have too much computational Overheads
• Are not asynchronous in nature.

• The proposed algo avoid Deep SNN, but a single layer SNN.
• No accuracy degradation.

• The proposed algo uses clustering to generate boundaries. 



Methodology: Spikes to find objects

Page 10

• To goal using spike firing is to isolate objects.
• Faster moving objects generate more spikes 

Nothing we didn’t 
already know



A spiking neuron is NOT enough
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• The argument is that a pixel connected to a 
spiking neuron may only measure frequency, but 
Cannot measure speed

• A spiking neuron connected to a neighbour can 
identify fast moving objects.

• Normalised weights for each neighbourhood adds up to 1.
• Central pixel has a weight of 0.2

What happen if 
object didn’t 

move?



Clustering to “box” objects
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• An object would be made up of pixels 
close to each other.

Spatial Clustering

• We don’t care the size of the clusters.



Overall Architecture
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• Identify objects moving a different 
speed.

• Later each moving object to detect 
boundaries



Experiments and Results
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Experiment
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• Author claims that most algorithm have 
not been evaluated using any 
benchmark dataset since there aren’t 
enough Event Camera output for 
reference. Author managed to use 
MVSEC.

• Author used YOLOv3 to 
generate box Boundaries as 
ground truth and compare 
their performance according 
to Interaction Over Union 
(IoU)

• It has been 
successful. The 
background noise 
does not affect its 
performance since 
SNN filters out 
noise.

Data (MVSEC) SNN YOLOv3



IoU
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• IoU >= 0.5 (True Positive): Matching boundaries groud 
truth.

• IoU < 0.5 (False Negative): Cover some ground truth and 
beyond

• (False Positive): does NOT correspond to ground truth at 
all.

• The algorithm seems to respond very well.
• When multiple boundaries are generated. 

The cluster with the highest IoU is selected.



Final notes
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• Spiking neural accumulate 
(AC) inputs. Unlike ANN 
which multiplies and 
accumulates (MAC) for 
every neuron.

• Energy and latency 
efficient.

• Energy consumption is 
estimated Eq. 2
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The End

Any questions are welcome.


