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Abstract
We present Multiscale Vision Transformers (MViT) for

video and image recognition, by connecting the seminal idea
of multiscale feature hierarchies with transformer models.
Multiscale Transformers have several channel-resolution
scale stages. Starting from the input resolution and a small
channel dimension, the stages hierarchically expand the
channel capacity while reducing the spatial resolution. This
creates a multiscale pyramid of features with early lay-
ers operating at high spatial resolution to model simple
low-level visual information, and deeper layers at spatially
coarse, but complex, high-dimensional features. We eval-
uate this fundamental architectural prior for modeling the
dense nature of visual signals for a variety of video recog-
nition tasks where it outperforms concurrent vision trans-
formers that rely on large scale external pre-training and
are 5-10⇥ more costly in computation and parameters. We
further remove the temporal dimension and apply our model
for image classification where it outperforms prior work
on vision transformers. Code is available at: https:
//github.com/facebookresearch/SlowFast.

1. Introduction
We begin with the intellectual history of neural network

models for computer vision. Based on their studies of cat
and monkey visual cortex, Hubel and Wiesel [55] developed
a hierarchical model of the visual pathway with neurons
in lower areas such as V1 responding to features such as
oriented edges and bars, and in higher areas to more spe-
cific stimuli. Fukushima proposed the Neocognitron [32], a
neural network architecture for pattern recognition explic-
itly motivated by Hubel and Wiesel’s hierarchy. His model
had alternating layers of simple cells and complex cells, thus
incorporating downsampling, and shift invariance, thus incor-
porating convolutional structure. LeCun et al. [65] took the
additional step of using backpropagation to train the weights
of this network. But already the main aspects of hierarchy of
visual processing had been established: (i) Reduction in spa-
tial resolution as one goes up the processing hierarchy and
(ii) Increase in the number of different “channels”, with each

*Equal technical contribution.
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Figure 1. Multiscale Vision Transformers learn a hierarchy from
dense (in space) and simple (in channels) to coarse and complex
features. Several resolution-channel scale stages progressively
increase the channel capacity of the intermediate latent sequence
while reducing its length and thereby spatial resolution.

channel corresponding to ever more specialized features.
In a parallel development, the computer vision com-

munity developed multiscale processing, sometimes called
“pyramid” strategies, with Rosenfeld and Thurston [85], Burt
and Adelson [8], Koenderink [61], among the key papers.
There were two motivations (i) To decrease the computing re-
quirements by working at lower resolutions and (ii) A better
sense of “context” at the lower resolutions, which could then
guide the processing at higher resolutions (this is a precursor
to the benefit of “depth” in today’s neural networks.)

The Transformer [98] architecture allows learning ar-
bitrary functions defined over sets and has been scalably
successful in sequence tasks such as language comprehen-
sion [26] and machine translation [7]. Fundamentally, a
transformer uses blocks with two basic operations. First,
is an attention operation [4] for modeling inter-element re-
lations. Second, is a multi-layer perceptron (MLP), which
models relations within an element. Intertwining these oper-
ations with normalization [2] and residual connections [44]
allows transformers to generalize to a wide variety of tasks.

Recently, transformers have been applied to key com-
puter vision tasks such as image classification. In the spirit
of architectural universalism, vision transformers [25, 95]
approach performance of convolutional models across a va-
riety of data and compute regimes. By only having a first
layer that ‘patchifies’ the input in spirit of a 2D convolu-
tion, followed by a stack of transformer blocks, the vision
transformer aims to showcase the power of the transformer
architecture using little inductive bias.
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Figure: Several resolution-channel scale stages of MViT1.

1ICCV-2021

https://ai.meta.com/blog/multiscale-vision-transformers-an-architecture-for-modeling-visual-data/
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Things to Think About

A stack of identical blocks (Single Scale)

Computational complexity of canonical self-attention

Attention(Q,K, V ) = softmax(
QKT

√
d̃

)V (1)

where

X ∈ Rn×d, Q = XWQ,K = XWK , V = XWV

WQ,WK ,WV ∈ Rd×d̃

https://proceedings.mlr.press/v201/duman-keles23a/duman-keles23a.pdf
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Self-Attention Computational Complexity

Scales quadratically in input sequence length n

1 Calculation of S = QKT√
d̃

takes O(n2d̃)

2 Exponentiation and calculation of row sum of S takes
O(n2)

3 Division of each element of S with the corresponding row
sum takes O(n2)

4 Post-multiplication with V takes O(n2d̃)
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Motivation

Decrease computing requirements
A better sense of “context” at the lower resolutions guiding
the processing at higher resolutions

In this paper, our intention is to connect the seminal idea
of multiscale feature hierarchies with the transformer model.
We posit that the fundamental vision principle of resolution
and channel scaling, can be beneficial for transformer models
across a variety of visual recognition tasks.

We present Multiscale Vision Transformers (MViT), a
transformer architecture for modeling visual data such as im-
ages and videos. Consider an input image as shown in Fig. 1.
Unlike conventional transformers, which maintain a constant
channel capacity and resolution throughout the network,
Multiscale Transformers have several channel-resolution
‘scale’ stages. Starting from the image resolution and a small
channel dimension, the stages hierarchically expand the
channel capacity while reducing the spatial resolution. This
creates a multiscale pyramid of feature activations inside the
transformer network, effectively connecting the principles
of transformers with multi scale feature hierarchies.

Our conceptual idea provides an effective design advan-
tage for vision transformer models. The early layers of our
architecture can operate at high spatial resolution to model
simple low-level visual information, due to the lightweight
channel capacity. In turn, the deeper layers can effectively
focus on spatially coarse but complex high-level features
to model visual semantics. The fundamental advantage of
our multiscale transformer arises from the extremely dense
nature of visual signals, a phenomenon that is even more
pronounced for space-time visual signals captured in video.

A noteworthy benefit of our design is the presence of
strong implicit temporal bias in video multiscale models. We
show that vision transformer models [25] trained on natural
video suffer no performance decay when tested on videos
with shuffled frames. This indicates that these models are not
effectively using the temporal information and instead rely
heavily on appearance. In contrast, when testing our MViT
models on shuffled frames, we observe significant accuracy
decay, indicating strong use of temporal information.

Our focus in this paper is video recognition, and we de-
sign and evaluate MViT for video tasks (Kinetics [59, 10],
Charades [86], SSv2 [38] and AVA [39]). MViT provides
a significant performance gain over concurrent video trans-
formers [78, 6, 1], without any external pre-training data.

In Fig. A.4 we show the computation/accuracy trade-off
for video-level inference, when varying the number of tem-
poral clips used in MViT. The vertical axis shows accuracy
on Kinetics-400 and the horizontal axis the overall infer-
ence cost in FLOPs for different models, MViT and concur-
rent ViT [25] video variants: VTN [78], TimeSformer [6],
ViViT [1]. To achieve similar accuracy level as MViT, these
models require significant more computation and parameters
(e.g. ViViT-L [1] has 6.8⇥ higher FLOPs and 8.5⇥ more pa-
rameters at equal accuracy, more analysis in §A.1) and need
large-scale external pre-training on ImageNet-21K (which
contains around 60⇥ more labels than Kinetics-400).

IN-1K

IN-21K
IN-21KIN-21K

+4.6% acc
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at 1/3 Params 
without ImageNet 

MViT-B 16x4
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Figure 2. Accuracy/complexity trade-off on Kinetics-400 for
varying # of inference clips per video shown in MViT curves.
Concurrent vision-transformer based methods [78,6,1] require over
5⇥ more computation and large-scale external pre-training on
ImageNet-21K (IN-21K), to achieve equivalent MViT accuracy.

We further apply our architecture to an image classifi-
cation task on ImageNet [21], by simply removing the tem-
poral dimension of the video model found with ablation
experiments on Kinetics, and show significant gains over
single-scale vision transformers for image recognition.

2. Related Work
Convolutional networks (ConvNets). Incorporating down-
sampling, shift invariance, and shared weights, ConvNets
are de-facto standard backbones for computer vision tasks
for image [65, 62, 88, 90, 46, 12, 15, 34, 93, 81, 41] and
video [87, 31, 11, 79, 69, 106, 96, 30, 105, 35, 29, 117, 57].
Self-attention in ConvNets. Self-attention mechanisms
has been used for image understanding [82, 114, 52], un-
supervised object recognition [74] as well as vision and
language [77, 66]. Hybrids of self-attention operations and
convolutional networks have also been applied to image
understanding [51] and video recognition [101].
Vision Transformers. Much of current enthusiasm in ap-
plication of Transformers [98] to vision tasks commences
with the Vision Transformer (ViT) [25] and Detection Trans-
former [9]. We build directly upon [25] with a staged model
allowing channel expansion and resolution downsampling.
DeiT [95] proposes a data efficient approach to training ViT.
Our training recipe builds on, and we compare our image
classification models to, DeiT under identical settings.

An emerging thread of work aims at applying transform-
ers to vision tasks such as object detection [5], semantic
segmentation [115, 99], 3D reconstruction [72], pose estima-
tion [107], generative modeling [14], image retrieval [27],
medical image segmentation [13, 97, 111], point clouds [40],
video instance segmentation [103], object re-identification
[47], video retrieval [33], video dialogue [64], video object
detection [110] and multi-modal tasks [73, 23, 80, 53, 108].
A separate line of works attempts at modeling visual data
with learnt discretized token sequences [104, 83, 14, 109, 18].
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Multiscale: Step by Step

Scale stages: Transformer blocks that operates on the
same scale (identical resolution and channel capacity).

stage operators output sizes
data layer stride ⌧⇥1⇥1 T⇥H⇥W

patch1
1⇥16⇥16, D

D⇥T⇥ H
16

⇥W
16stride 1⇥16⇥16

scale2


MHA(D)
MLP(4D)

�
⇥N D⇥T⇥ H

16
⇥W

16

Table 1. Vision Transformers (ViT) base model starts from a
data layer that samples visual input with rate ⌧⇥1⇥1 to T⇥H⇥W
resolution, where T is the number of frames H height and W width.
The first layer, patch1 projects patches (of shape 1⇥16⇥16) to form
a sequence, processed by a stack of N transformer blocks (stage2)
at uniform channel dimension (D) and resolution (T⇥ H

16
⇥W

16
).

Multiple heads. As in [98] the computation can be paral-
lelized by considering h heads where each head is perform-
ing the pooling attention on a non overlapping subset of D/h
channels of the D dimensional input tensor X .

Computational Analysis. Since attention computation
scales quadratically w.r.t. the sequence length, pooling the
key, query and value tensors has dramatic benefits on the
fundamental compute and memory requirements of the Mul-
tiscale Transformer model. Denoting the sequence length
reduction factors by fQ, fK and fV we have,

fj = sj
T · sj

H · sj
W , 8 j 2 {Q, K, V }.

Considering the input tensor to P(; ⇥) to have dimensions
D ⇥ T ⇥ H ⇥ W , the run-time complexity of MHPA is
O(THWD/h(D + THW/fQfK)) per head and the mem-
ory complexity is O(THWh(D/h + THW/fQfK)).

This trade-off between the number of channels D and
sequence length term THW/fQfK informs our design
choices about architectural parameters such as number of
heads and width of layers. We refer the reader to the sup-
plement for a detailed analysis and discussions on the time-
memory complexity trade-off.

3.2. Multiscale Transformer Networks

Building upon Multi Head Pooling Attention (Sec. 3.1),
we describe the Multiscale Transformer model for visual
representation learning using exclusively MHPA and MLP
layers. First, we present a brief review of the Vision Trans-
former Model that informs our design.

Preliminaries: Vision Transformer (ViT). The Vision
Transformer (ViT) architecture [25] starts by dicing the input
video of resolution T⇥H⇥W , where T is the number of
frames H the height and W the width, into non-overlapping
patches of size 1⇥16⇥16 each, followed by point-wise ap-
plication of linear layer on the flattened image patches to to
project them into the latent dimension, D, of the transformer.
This is equivalent to a convolution with equal kernel size
and stride of 1⇥16⇥16 and is shown as patch1 stage in the
model definition in Table 1.

Next, a positional embedding E 2 RL⇥D is added to
each element of the projected sequence of length L with

stages operators output sizes
data layer stride ⌧⇥1⇥1 D⇥T⇥H⇥W

cube1
cT⇥cH⇥cW , D

D⇥ T
sT

⇥H
4
⇥W

4stride sT⇥4⇥4

scale2


MHPA(D)
MLP(4D)

�
⇥N2 D⇥ T

sT
⇥H

4
⇥W

4

scale3


MHPA(2D)
MLP(8D)

�
⇥N3 2D⇥ T

sT
⇥H

8
⇥W

8

scale4


MHPA(4D)
MLP(16D)

�
⇥N4 4D⇥ T

sT
⇥ H

16
⇥W

16

scale5


MHPA(8D)
MLP(32D)

�
⇥N5 8D⇥ T

sT
⇥ H

32
⇥W

32

Table 2. Multiscale Vision Transformers (MViT) base model.
Layer cube1, projects dense space-time cubes (of shape ct⇥cy⇥cw)
to D channels to reduce spatio-temporal resolution to T

sT
⇥H

4
⇥W

4
.

The subsequent stages progressively down-sample this resolution
(at beginning of a stage) with MHPA while simultaneously increas-
ing the channel dimension, in MLP layers, (at the end of a stage).
Each stage consists of N⇤ transformer blocks, denoted in [brackets].

dimension D to encode the positional information and break
permutation invariance. A learnable class embedding is
appended to the projected image patches.

The resulting sequence of length of L + 1 is then pro-
cessed sequentially by a stack of N transformer blocks, each
one performing attention (MHA [98]), multi-layer percep-
tron (MLP) and layer normalization (LN [3]) operations.
Considering X to be the input of the block, the output of a
single transformer block, Block(X) is computed by

X1 = MHA(LN(X)) + X

Block(X) = MLP(LN(X1)) + X1.

The resulting sequence after N consecutive blocks is layer-
normalized and the class embedding is extracted and passed
through a linear layer to predict the desired output (e.g. class).
By default, the hidden dimension of the MLP is 4D. We
refer the reader to [25, 98] for details.

In context of the present paper, it is noteworthy that ViT
maintains a constant channel capacity and spatial resolution
throughout all the blocks (see Table 1).

Multiscale Vision Transformers (MViT). Our key con-
cept is to progressively grow the channel resolution (i.e. di-
mension), while simultaneously reducing the spatiotemporal
resolution (i.e. sequence length) throughout the network. By
design, our MViT architecture has fine spacetime (and coarse
channel) resolution in early layers that is up-/downsampled
to a coarse spacetime (and fine channel) resolution in late
layers. MViT is shown in Table 2.

Scale stages. A scale stage is defined as a set of N trans-
former blocks that operate on the same scale with identi-
cal resolution across channels and space-time dimensions
D⇥T⇥H⇥W . At the input (cube1 in Table 2), we project
the patches (or cubes if they have a temporal extent) to a
smaller channel dimension (e.g. 8⇥ smaller than a typical
ViT model), but long sequence (e.g. 4⇥4 = 16⇥ denser than
a typical ViT model; cf. Table 1).

4
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Reduce Resolution by Pooling

Efficient Transformers. Recent works [100, 60, 17, 94, 20,
16, 67] reduce the quadratic attention complexity to make
transformers more efficient for natural language processing
applications, which is complementary to our approach.

Three concurrent works propose a ViT-based architecture
for video [78, 6, 1]. However, these methods rely on pre-
training on vast amount of external data such as ImageNet-
21K [21], and thus use the vanilla ViT [25] with minimal
adaptations. In contrast, our MViT introduces multiscale
feature hierarchies for transformers, allowing effective mod-
eling of dense visual input without large-scale external data.

3. Multiscale Vision Transformer (MViT)

Our generic Multiscale Transformer architecture builds
on the core concept of stages. Each stage consists of multiple
transformer blocks with specific space-time resolution and
channel dimension. The main idea of Multiscale Transform-
ers is to progressively expand the channel capacity, while
pooling the resolution from input to output of the network.

3.1. Multi Head Pooling Attention

We first describe Multi Head Pooling Attention (MHPA),
a self attention operator that enables flexible resolution mod-
eling in a transformer block allowing Multiscale Transform-
ers to operate at progressively changing spatiotemporal reso-
lution. In contrast to original Multi Head Attention (MHA)
operators [98], where the channel dimension and the spatio-
temporal resolution remains fixed, MHPA pools the sequence
of latent tensors to reduce the sequence length (resolution)
of the attended input. Fig. 3 shows the concept.

Concretely, consider a D dimensional input tensor X
of sequence length L, X 2 RL⇥D. Following MHA [25],
MHPA projects the input X into intermediate query tensor
Q̂ 2 RL⇥D, key tensor K̂ 2 RL⇥D and value tensor V̂ 2
RL⇥D with linear operations

Q̂ = XWQ K̂ = XWK V̂ = XWV

/ with weights WQ, WK , WV of dimensions D ⇥ D. The
obtained intermediate tensors are then pooled in sequence
length, with a pooling operator P as described below.

Pooling Operator. Before attending the input, the interme-
diate tensors Q̂, K̂, V̂ are pooled with the pooling operator
P(·;⇥) which is the cornerstone of our MHPA and, by ex-
tension, of our Multiscale Transformer architecture.

The operator P(·;⇥) performs a pooling kernel com-
putation on the input tensor along each of the dimensions.
Unpacking ⇥ as ⇥ := (k, s,p), the operator employs a
pooling kernel k of dimensions kT ⇥ kH ⇥ kW , a stride s
of corresponding dimensions sT ⇥ sH ⇥ sW and a padding
p of corresponding dimensions pT ⇥ pH ⇥ pW to reduce an

Linear

X

   PoolQ

MatMul & Scale

Softmax

MatMul

THW × D   

Add & Norm

Linear Linear

   PoolK

^
K

^
V

^
Q

THW × D   THW × D   THW × D  

K
THW × D   

Q

~~~
THW × D   ^^^

V
THW × D   ~~~THW ×    ^^^

THW ~~~

THW × D   ^^^

   PoolV   PoolQ

Figure 3. Pooling Attention is a flexible attention mechanism that
(i) allows obtaining the reduced space-time resolution (T̂ ĤŴ ) of
the input (THW ) by pooling the query, Q = P(Q̂;⇥Q), and/or
(ii) computes attention on a reduced length (T̃ H̃W̃ ) by pooling the
key, K = P(K̂;⇥K), and value, V = P(V̂ ;⇥V ), sequences.

input tensor of dimensions L = T ⇥ H ⇥ W to L̃ given by,

L̃ =

�
L + 2p � k

s

⌫
+ 1

with the equation applying coordinate-wise. The pooled
tensor is flattened again yielding the output of P(Y ;⇥) 2
RL̃⇥D with reduced sequence length, L̃ = T̃ ⇥ H̃ ⇥ W̃ .

By default we use overlapping kernels k with shape-
preserving padding p in our pooling attention operators, so
that L̃ , the sequence length of the output tensor P(Y ;⇥),
experiences an overall reduction by a factor of sT sHsW .

Pooling Attention. The pooling operator P (·; ⇥) is applied
to all the intermediate tensors Q̂, K̂ and V̂ independently
with chosen pooling kernels k, stride s and padding p. De-
noting ✓ yielding the pre-attention vectors Q = P(Q̂;⇥Q),
K = P(K̂;⇥K) and V = P(V̂ ;⇥V ) with reduced se-
quence lengths. Attention is now computed on these short-
ened vectors, with the operation,

Attention(Q, K, V ) = Softmax(QKT /
p

D)V.

Naturally, the operation induces the constraints sK ⌘ sV

on the pooling operators. In summary, pooling attention is
computed as,

PA(·) = Softmax(P(Q;⇥Q)P(K;⇥K)T /
p

d)P(V ;⇥V ),

where
p

d is normalizing the inner product matrix row-wise.
The output of the Pooling attention operation thus has its
sequence length reduced by a stride factor of sQ

T sQ
HsQ

W fol-
lowing the shortening of the query vector Q in P(·).

3
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Pooling Operator

P(·; Θ) (2)

where
Θ := (k, s,p)

poling kernel k ∈ RkT×kH×kW

stride s ∈ RsT×sH×sW

padding p ∈ RpT×pH×pW

then

L̃ =

⌊
L+ 2p− k

s

⌋
+ 1

where
L = T ×H ×W, L̃ = T̃ × H̃ × W̃

length reduced by a factor of sT sHsW

https://cs231n.github.io/convolutional-networks/#pool
https://drive.google.com/file/d/1jrUBQaFGmJKyy32f-HhFrH8THk0PiTAM/view?usp=sharing
https://drive.google.com/file/d/1FdHqftccxbisj176ojoTGPOGob43wGRB/view?usp=sharing
https://drive.google.com/file/d/1aSiP0vKiKiDDTCKceyMgFZ7uvGXKGqSb/view?usp=sharing
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Computational Complexity

Given sequence length L = THW

After pooling L/fK , L/fQ, L/fV

fj = sjT s
j
HsjW , ∀j ∈ {Q,K, V }

1 Compute key, query, value embeddings

O(THWD2/h)

2 Calculate attention matrix and post-multiply with value
vectors

O(T 2H2W 2D/(fQfKh))

Overall O(THWD/h(D + THW/(fQfK)))

https://drive.google.com/file/d/1meOR2mCzRBm9J_gjjUGiCvYXePpksdtb/view?usp=sharing
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Multiscale Transformer Networks

Channel expansion:
e.g., 2D × T

sT
× H

8 × W
8 to 4D × T

sT
× H

16 × W
16

Query pooling: P(Q;k;p; s)

Key-Value pooling: ΘK ≡ ΘV

Skip connections

Multiscale attention block

https://drive.google.com/file/d/1kA5v7bh4-4V1u-ROOpb1tk7vlhHPwhFm/view?usp=sharing
https://drive.google.com/file/d/1UXK7kG02ye71J6FgSbUyK0BkPnsYo8tf/view?usp=sharing
https://drive.google.com/file/d/14Xpqkky2S9y1uYFjyaTL0sqGOMI-yffM/view?usp=sharing
https://drive.google.com/file/d/1Zd8vtHO0mc3dYSHUcy5ebmTsS0Rs8nmb/view?usp=sharing
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Experimental Results on Kinetics-400

model pre-train top-1 top-5 FLOPs⇥views Param
Two-Stream I3D [11] - 71.6 90.0 216 ⇥ NA 25.0
ip-CSN-152 [96] - 77.8 92.8 109⇥3⇥10 32.8
SlowFast 8⇥8 +NL [30] - 78.7 93.5 116⇥3⇥10 59.9
SlowFast 16⇥8 +NL [30] - 79.8 93.9 234⇥3⇥10 59.9
X3D-M [29] - 76.0 92.3 6.2⇥3⇥10 3.8
X3D-XL [29] - 79.1 93.9 48.4⇥3⇥10 11.0
ViT-B-VTN [78] ImageNet-1K 75.6 92.4 4218⇥1⇥1 114.0
ViT-B-VTN [78] ImageNet-21K 78.6 93.7 4218⇥1⇥1 114.0
ViT-B-TimeSformer [6] ImageNet-21K 80.7 94.7 2380⇥3⇥1 121.4
ViT-L-ViViT [1] ImageNet-21K 81.3 94.7 3992⇥3⇥4 310.8
ViT-B (our baseline) ImageNet-21K 79.3 93.9 180⇥1⇥5 87.2
ViT-B (our baseline) - 68.5 86.9 180⇥1⇥5 87.2
MViT-S - 76.0 92.1 32.9⇥1⇥5 26.1
MViT-B, 16⇥4 - 78.4 93.5 70.5⇥1⇥5 36.6
MViT-B, 32⇥3 - 80.2 94.4 170⇥1⇥5 36.6
MViT-B, 64⇥3 - 81.2 95.1 455⇥3⇥3 36.6
Table 4. Comparison with previous work on Kinetics-400. We
report the inference cost with a single “view" (temporal clip with
spatial crop) ⇥ the number of views (FLOPs⇥viewspace⇥viewtime).
Magnitudes are Giga (109) for FLOPs and Mega (106) for Param.
Accuracy of models trained with external data is de-emphasized.

We employ K, V pooling in all MHPA blocks, with
⇥K ⌘ ⇥V and sQ = (1, 8, 8) in scale1 and adaptively
decay this stride w.r.t. to the scale across stages such that the
K, V tensors have consistent scale across all blocks.

4. Experiments: Video Recognition
Datasets. We use Kinetics-400 [59] (K400) (⇠240k train-
ing videos in 400 classes) and Kinetics-600 [11]. We fur-
ther assess transfer learning performance for on Something-
Something-v2 [38], Charades [86], and AVA [39].

We report top-1 and top-5 classification accuracy (%) on
the validation set, computational cost (in FLOPs) of a single,
spatially center-cropped clip and the number of clips used.

Training. By default, all models are trained from random
initialization (“from scratch”) on Kinetics, without using
ImageNet [22] or other pre-training. Our training recipe and
augmentations follow [30,95]. For Kinetics, we train for 200
epochs with 2 repeated augmentation [50] repetitions.

We report ViT baselines that are fine-tuned from Ima-
geNet, using a 30-epoch version of the training recipe in [30].

For the temporal domain, we sample a clip from the full-
length video, and the input to the network are T frames with
a temporal stride of ⌧ ; denoted as T ⇥ ⌧ [30].

Inference. We apply two testing strategies following [30,
29]: (i) Temporally, uniformly samples K clips (e.g. K=5)
from a video, scales the shorter spatial side to 256 pixels and
takes a 224⇥224 center crop, and (ii), the same as (i) tempo-
rally, but take 3 crops of 224⇥224 to cover the longer spatial
axis. We average the scores for all individual predictions.

All implementation specifics are in §D.

4.1. Main Results

Kinetics-400. Table 4 compares to prior work. From top-
to-bottom, it has four sections and we discuss them in turn.

model pretrain top-1 top-5 GFLOPs⇥views Param
SlowFast 16⇥8 +NL [30] - 81.8 95.1 234⇥3⇥10 59.9
X3D-M - 78.8 94.5 6.2⇥3⇥10 3.8
X3D-XL - 81.9 95.5 48.4⇥3⇥10 11.0
ViT-B-TimeSformer [6] IN-21K 82.4 96.0 1703⇥3⇥1 121.4
ViT-L-ViViT [1] IN-21K 83.0 95.7 3992⇥3⇥4 310.8
MViT-B, 16⇥4 - 82.1 95.7 70.5⇥1⇥5 36.8
MViT-B, 32⇥3 - 83.4 96.3 170⇥1⇥5 36.8
MViT-B-24, 32⇥3 - 83.8 96.3 236⇥1⇥5 52.9

Table 5. Comparison with previous work on Kinetics-600.

The first Table 4 section shows prior art using ConvNets.
The second section shows concurrent work using Vision

Transformers [25] for video classification [78, 6]. Both ap-
proaches rely on ImageNet pre-trained base models. ViT-B-
VTN [78] achieves 75.6% top-1 accuracy, which is boosted
by 3% to 78.6% by merely changing the pre-training from
ImageNet-1K to ImageNet-21K. ViT-B-TimeSformer [6]
shows another 2.1% gain on top of VTN, at higher cost of
7140G FLOPs and 121.4M parameters. ViViT improves
accuracy further with an even larger ViT-L model.

The third section in Table 4 shows our ViT baselines. We
first list our ViT-B, also pre-trained on the ImageNet-21K,
which achieves 79.3%, thereby being 1.4% lower than ViT-B-
TimeSformer, but is with 4.4⇥ fewer FLOPs and 1.4⇥ fewer
parameters. This result shows that simply fine-tuning an
off-the-shelf ViT-B model from ImageNet-21K [25] provides
a strong baseline on Kinetics. However, training this model
from-scratch with the same fine-tuning recipe will result
in 34.3%. Using our “training-from-scratch” recipe will
produce 68.5% for this ViT-B model, using the same 1⇥5,
spatial ⇥ temporal, views for video-level inference.

The final section of Table 4 lists our MViT results. All our
models are trained-from-scratch using this recipe, without
any external pre-training. Our small model, MViT-S pro-
duces 76.0% while being relatively lightweight with 26.1M
param and 32.9⇥5=164.5G FLOPs, outperforming ViT-B
by +7.5% at 5.5⇥ less compute in identical train/val setting.

Our base model, MViT-B provides 78.4%, a +9.9% accu-
racy boost over ViT-B under identical settings, while having
2.6⇥/2.4⇥fewer FLOPs/parameters. When changing the
frame sampling from 16⇥4 to 32⇥3 performance increases
to 80.2%. Finally, we take this model and fine-tune it for 5
epochs with longer 64 frame input, after interpolating the
temporal positional embedding, to reach 81.2% top-1 using
3 spatial and 3 temporal views for inference (it is sufficient
test with fewer temporal views if a clip has more frames).
Further quantitative and qualitative results are in §A.

Kinetics-600 [11] is a larger version of Kinetics. Results
are in Table 5. We train MViT from-scratch, without any
pre-training. MViT-B, 16⇥4 achieves 82.1% top-1 accu-
racy. We further train a deeper 24-layer model with longer
sampling, MViT-B-24, 32⇥3, to investigate model scale on
this larger dataset. MViT achieves state-of-the-art of 83.4%
with 5-clip center crop testing while having 56.0⇥ fewer
FLOPs and 8.4⇥ fewer parameters than ViT-L-ViViT [1]
which relies on large-scale ImageNet-21K pre-training.
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Good Enough?

MViTv2: Improved Multiscale Vision Transformers for
Classification and Detection2

1 Decomposed relative positional embeddings

2 Residual pooling connection

2CVPR-2022
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Decomposed Relative Positional Embedding

Decomposed Relative Positional Embedding

Attn(Q,K, V ) = Softmax
(
(QKT + E(rel))/

√
d

)
V (3)

where
E

(rel)
ij = Qi ·Rp(i),p(j) , Rp(i),p(j) ∈ Rd

decompose along axes

Rp(i),p(j) = Rh
h(i),h(j) +Rw

w(i),w(j) +Rt
t(i),t(j) (4)

https://colab.research.google.com/drive/1wQN8c_heQPailJy1irf8PMitCQWESzw8?usp=sharing
https://drive.google.com/file/d/1MZt-7sdwrmlvNW7Fy5kUDPbpAaw90xIG/view?usp=sharing
https://drive.google.com/file/d/1JpygCBrsl6u46ER29oMk5APu8Fs5t-tG/view?usp=sharing
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Decomposed Relative Positional Embedding

Wait...

eij =
QiKj + E

(rel)
ij√

d
, E

(rel)
ij = Qi ·Rp(i),p(j) (5)

vs.

eij =
Qi(Kj +Rp(i),p(j))√

d
(6)

why?
1 Compute all (original) eij in a single matrix multiplication
2 Avoid broadcasting relative position representations

https://arxiv.org/pdf/1803.02155.pdf
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Residual Pooling Connection

Z := Attn(Q,K, V ) +Q (7)
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Residual Pooling Connection

Pooling Attention vs. Window Attention

Local aggregation then global self-attention computation vs.
computing self-attention locally within non-overlapping
windows

Figure: An illustration of the shifted window approach in Swin

https://arxiv.org/pdf/2103.14030.pdf
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Experimental Results on Kinetics-400

model pre-train top-1 top-5 FLOPs⇥views Param
SlowFast 16⇥8 +NL [23] - 79.8 93.9 234⇥3⇥10 59.9
X3D-XL [22] - 79.1 93.9 48.4⇥3⇥10 11.0
MoViNet-A6 [45] - 81.5 95.3 386⇥1⇥1 31.4
MViTv1, 16⇥4 [21] - 78.4 93.5 70.3⇥1⇥5 36.6
MViTv1, 32⇥3 [21] - 80.2 94.4 170⇥1⇥5 36.6
MViTv2-S, 16⇥4 - 81.0 94.6 64⇥1⇥5 34.5
MViTv2-B, 32⇥3 - 82.9 95.7 225⇥1⇥5 51.2
ViT-B-VTN [59]

IN-21K

78.6 93.7 4218⇥1⇥1 114.0
ViT-B-TimeSformer [3] 80.7 94.7 2380⇥3⇥1 121.4
ViT-L-ViViT [1] 81.3 94.7 3992⇥3⇥4 310.8
Swin-L" 3842 [56] 84.9 96.7 2107⇥5⇥10 200.0
MViTv2-L" 3122, 40⇥3 86.1 97.0 2828⇥3⇥5 217.6
Table 10. Comparison with previous work on Kinetics-400. We
report the inference cost with a single “view” (temporal clip with
spatial crop) ⇥ the number of views (FLOPs⇥viewspace⇥viewtime).
Magnitudes are Giga (109) for FLOPs and Mega (106) for Param.

model pretrain top-1 top-5 FLOPs⇥views Param
SlowFast 16⇥8 +NL [23] - 81.8 95.1 234⇥3⇥10 59.9
X3D-XL [22] - 81.9 95.5 48.4⇥3⇥10 11.0
MoViNet-A6 [45] - 84.8 96.5 386⇥1⇥1 31.4
MViTv1-B-24, 32⇥3 [21] - 84.1 96.5 236⇥1⇥5 52.9
MViTv2-B, 32⇥3 - 85.5 97.2 206⇥1⇥5 51.4
ViT-L-ViViT [1]

IN-21K

83.0 95.7 3992⇥3⇥4 310.8
Swin-B [56] 84.0 96.5 282⇥3⇥4 88.1
Swin-L" 3842 [56] 86.1 97.3 2107⇥5⇥10 200.0
MViTv2-L" 3122, 32⇥3 87.2 97.6 2063⇥3⇥4 217.6
MViTv2-L" 3122, 40⇥3 87.5 97.8 2828⇥3⇥4 217.6
MViTv2-L" 3522, 40⇥3 87.9 97.9 3790⇥3⇥4 217.6

Table 11. Comparison with previous work on Kinetics-600.

model pretrain top-1 top-5 FLOPs⇥views Param
SlowFast 16⇥8 +NL [23] K600 71.0 89.6 234⇥3⇥10 59.9
MoViNet-A6 [45] N/A 72.3 N/A 386⇥1⇥1 31.4
MViTv2-B, 32⇥3 - 76.6 93.2 206⇥3⇥3 51.4
MViTv2-L" 3122, 40⇥3 IN-21K 79.4 94.9 2828⇥3⇥3 217.6

Table 12. Comparison with previous work on Kinetics-700.

6.1. Main Results

Kinetics-400. Table 10 compares MViTv2 to prior work,
including state-of-the-art CNNs and ViTs.

When training from scratch, our MViTv2-S & B models
produce 81.0% & 82.9% top-1 accuracy which is +2.6% &
+2.7% higher than their MViTv1 [21] counterparts. These
gains stem solely from the improvements in §4.1, as the
training recipe is identical.

Prior ViT-based models require large-scale pre-training
on IN-21K to produce best accuracy on K400. We fine-tune
our MViTv2-L with large spatiotemporal input size 40⇥3122

(time ⇥space2) to reach 86.1% top-1 accuracy, showing the
performance of our architecture in a large-scale setting.

Kinetics-600/-700. Table 11 shows the results on K600. We
train MViTv2-B, 32⇥3 from scratch and achieves 85.5%
top-1 accuracy, which is better than the MViTv1 counter-
part (+1.4%), and even better than other ViTs with IN-21K
pre-training(e.g. +1.5% over Swin-B [56]) while having
⇠2.2⇥and ⇠40% fewer FLOPs and parameters. The larger
MViTv2-L 40⇥3 sets a new state-of-the-art at 87.9%.

model pretrain top-1 top-5 FLOPs⇥views Param
TEA [49] IN-1K 65.1 89.9 70⇥3⇥10 -
MoViNet-A3 [45] N/A 64.1 88.8 24⇥1⇥1 5.3
ViT-B-TimeSformer [3] IN-21K 62.5 - 1703⇥3⇥1 121.4
MViTv1-B-24, 32⇥3 K600 68.7 91.5 236.0⇥3⇥1 53.2
SlowFast R101, 8⇥8 [23]

K400

63.1 87.6 106⇥3⇥1 53.3
MViTv1-B, 16⇥4 64.7 89.2 70.5⇥3⇥1 36.6
MViTv1-B, 64⇥3 67.7 90.9 454⇥3⇥1 36.6
MViTv2-S, 16⇥4 68.2 91.4 64.5⇥3⇥1 34.4
MViTv2-B, 32⇥3 70.5 92.7 225⇥3⇥1 51.1
Swin-B [56] IN21K + K400 69.6 92.7 321⇥3⇥1 88.8
MViTv2-B, 32⇥3 IN21K + K400 72.1 93.4 225⇥3⇥1 51.1
MViTv2-L" 3122, 40⇥3 IN21K + K400 73.3 94.1 2828⇥3⇥1 213.1

Table 13. Comparison with previous work on SSv2.

In Table 12, our MViTv2-L achieves 79.4% on K700
which greatly surpasses the previous best result by +7.1%.

Something-something-v2. Table 13 compares methods on
a more ‘temporal modeling’ dataset SSv2. Our MViTv2-
S with 16 frames first improves over MViTv1 counterpart
by a large gain (+3.5%), which verifies the effectiveness of
our proposed pooling attention for temporal modeling. The
deeper MViTv2-B achieves 70.5% top-1 accuracy, surpass-
ing the previous best result Swin-B with IN-21K and K400
pre-training by +0.9% while using ⇠30% and 40% fewer
FLOPs and parameters and only K400. With IN-21K pre-
training, MViTv2-B boosts accuracy by 1.6% and achieves
72.1%. MViTv2-L achieves 73.3% top-1 accuracy.

6.2. Ablations on Kinetics

In this section, we carry out MViTv2 ablations on K400.
The video ablation our technical improvements share trends
with Table 6 & 7 and are in §A.5.

model T⇥⌧ scratch IN1k IN21k FLOPs Param
MViTv2-S 16⇥4 81.2 82.2 82.6 64 34.5
MViTv2-B 32⇥3 82.9 83.3 84.3 225 51.2
MViTv2-L 40⇥3 81.4 83.4 84.5 1127 217.6
MViTv2-L" 3122 40⇥3 81.8 84.4 85.7 2828 217.6

Table 14. Effect of pre-training on K400. We use
viewspace⇥viewtime = 1⇥10 crops for inference.

Effect of pre-training datasets. Table 14 compares the
effect different pre-training schemes on K400. We observe
that: (i) For MViTv2-S and MViTv2-B models, using either
IN1K or IN21k pre-training boosts accuracy compared to
training from scratch, e.g.MViTv2-S gets +1.0% and 1.4%
gains with IN1K and IN21K pre-training. (ii) For large mod-
els, ImageNet pre-training is necessary as they are heavily
overfitting when trained from scratch (cf . Table 10).

7. Conclusion
We present an improved Multiscale Vision Transformer

as a general hierarchical architecture for visual recognition.
In empirical evaluation, MViT shows strong performance
compared to other vision transformers and achieves state-of-
the-art accuracy on widely-used benchmarks across image
classification, object detection, instance segmentation and
video recognition. We hope that our architecture will be
useful for further research in visual recognition.
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Are They Necessary?

Hiera: A Hierarchical Vision Transformer without
Bells-and-Whistles3

Observation:
Vision-specific modules make models slower

e.g., attention pooling, relative positional embedding

Question:

Why should we slow down our architecture to add the
spatial biases?

Hypothesis:

Use MAE pretraining to teach ViTs spatial reasoning

3ICML-2023

https://drive.google.com/file/d/1VgM6WRDJrLqXcT7vWAjwmdfFaWCnkTVS/view?usp=sharing
https://arxiv.org/pdf/2203.16527.pdf
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Hiera Setup

Figure: Local attention within “mask units" for the first two stages and
global attention for the rest
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Implementation Details

MAE Recap

encoder: e.g., ViT, applied to visible, unmasked patches
decoder: lightweight, independent of the encoder design
reconstruction target: pixel values for masked tokens

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-

16000
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MAE for Hierarchical Models

Figure: Random mask units rather than tokens

https://colab.research.google.com/drive/1gpmJxl6_Fkb9CuhVn90rgvmW6gl9v1Tp?usp=sharing
https://drive.google.com/file/d/1mx5hCl0HFjHEdterEhV0jEK2TvqSFkYf/view?usp=sharing
https://drive.google.com/file/d/1SeqT8UvA51Muyowt-JIJX5WoLVajG6oN/view?usp=sharing
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Mask Unit Attention

Figure: Mask Unit Attention performs local attention within mask units

https://drive.google.com/file/d/1iPb2PfnObEd4qauu2DGVaN4fQBw1dYSm/view?usp=sharing
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Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

Figure 5. Mask Unit Attention. MViTv2 uses pooling attention
(a) which performs global attention with a pooled version of K
and V . This can get expensive for large inputs (e.g., for video),
so we opt to replace this with “Mask Unit Attention” (b) which
performs local attention within mask units (Fig. 4a). This has no
overhead because we already group tokens into units for masking.
We do not have to worry about shifting like in Swin (Liu et al.,
2021), because we use global attention in stages 3 and 4 (Fig. 2).

MViTv2 (Li et al., 2022c) is a hierarchical model. That is,
it learns multi-scale representations over its four stages. It
starts by modeling low level features with a small channel
capacity but high spatial resolution, and then in each stage
trades channel capacity for spatial resolution to model more
complex high-level features in deeper layers.

A key feature of MViTv2 is pooling attention (Fig. 5a),
wherein features are locally aggregated—typically using
3 ⇥ 3 convolution, before computing self-attention. In pool-
ing attention, K and V are pooled to decrease computation
in the first two stages, while Q is pooled to transition from
one stage to the next by reducing spatial resolution. MViTv2
also features decomposed relative position embeddings in-
stead of absolute ones and a residual pooling connection to
skip between pooled Q tokens inside the attention blocks.
Note that by default, pooling attention in MViTv2 contain
convs with stride 1 even if no downsampling is required.

Applying MAE. Since MViTv2 downsamples by 2 ⇥ 2 a
total of three times (Fig. 2) and because it uses a token size
of 4 ⇥ 4 pixels, we employ a mask unit of size 32 ⇥ 32.
This ensures that each mask unit corresponds to 82, 42, 22,
12 tokens in stages 1, 2, 3, 4 respectively, allowing each
mask unit to cover at least one distinct token in each stage.
Then as described in Fig. 4d, to make sure conv kernels do
not bleed into deleted tokens, we shift the mask units to the
batch dimension to separate them for pooling (effectively
treating each mask unit as an “image”) and then undo the
shift afterward to ensure that self-attention is still global.

3.2. Simplifying MViTv2

In this section we remove non-essential components of
MViTv2 while training with MAE. In Tab. 1, we find that we
can remove or otherwise simplify all of them and still main-
tain high accuracy for image classification on ImageNet-1K.
We use MViTv2-L to ensure our changes work at scale.

Relative Position Embeddings. MViTv2 swaps the abso-

Image Video
Setting acc. im/s acc. clip/s
MViTv2-L Supervised 85.3 219.8 80.5 20.5
Hiera-L MAE
a. replace rel pos with absolute ⇤ 85.6 253.3 85.3 20.7
b. replace convs with maxpools ⇤ 84.4 99.9† 84.1 10.4†

c. delete stride=1 maxpools ⇤ 85.4 309.2 84.3 26.2
d. set kernel size equal to stride 85.7 369.8 85.5 29.4
e. delete q attention residuals 85.6 374.3 85.5 29.8
f. replace kv pooling with MU attn 85.6 531.4 85.5 40.8

Table 1. Simplifying MViTv2. MViTv2 employs several architec-
tural tweaks to perform well on supervised training. By progres-
sively removing them in Sec. 3.2, we find these bells-and-whistles
are unnecessary when training with a strong pretext task (MAE).
In the process, we create an extremely simple model (Fig. 2) that is
accurate while being significantly faster. We report fp16 inference
speed for ImageNet-1K and Kinetics-400 on an A100. Our final
Hiera-L in gray . ⇤Requires the separate-and-pad trick described
in Fig. 4d. †PyTorch’s maxpool3d interacts unfavorably with this.

lute position embeddings in Dosovitskiy et al. (2021) for
more powerful relative ones added to attention in each block.
Technically, we could implement a version of this that is
compatible with sparse pretraining, but doing so would add
a lot of complexity. Instead, we opt to start our study here
by undoing this change and using absolute position embed-
dings instead. As shown in Tab. 1a, these relative position
embeddings are not necessary when training with MAE.
Further, absolute position embeddings are much faster.

Removing Convolutions. Next, we aim to remove the
convs in the model, which are vision specific modules and
add potentially unnecessary overhead. We first attempt to
replace every conv layer with maxpools (shown by Fan et al.
(2021) to be the next best option), which itself is fairly
costly. The result (Tab. 1b) drops accuracy by over 1% on
images, but this is to be expected: we’ve also replaced all
of the extra stride=1 convs with maxpools, which impacts the
features significantly (with padding and small mask units,
this in effect performs a relu on every feature map). Once
we delete those additional stride=1 maxpools (Tab. 1c), we
nearly return to the accuracy we had before, while speeding
up the model by 22% for images and 27% for video. At this
point, the only pooling layers that remain are for Q at stage
transitions and for KV pooling in the first two stages.

Removing Overlap. The remaining maxpool layers still
have a kernel size of 3 ⇥ 3, necessitating the use of the
separate-and-pad trick in Fig. 4d during both training and
inference. However, as shown in Fig. 4e, we can avoid this
problem entirely if we just do not let these maxpool kernels
overlap. That is, if we set the kernel size equal to stride for
each maxpool, we can use sparse MAE pretraining without
the separate-and-pad trick. As shown in Tab. 1d, this speeds
up the model by 20% on image and 12% on video while
increasing accuracy, likely due to not having to pad.
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backbone pretrain acc. FLOPs (G) Param
ViT-B MAE 81.5 180⇥3⇥5 87M
Hiera-B MAE 84.0 102⇥3⇥5 51M
Hiera-B+ MAE 85.0 133⇥3⇥5 69M
MViTv2-L - 80.5 377⇥1⇥10 218M
MViTv2-L MaskFeat 84.3 377⇥1⇥10 218M
ViT-L MAE 85.2 597⇥3⇥5 305M
Hiera-L MAE 87.3 413⇥3⇥5 213M
ViT-H MAE 86.6 1192⇥3⇥5 633M
Hiera-H MAE 87.8 1159⇥3⇥5 672M

Table 4. K400 results. Hiera improves on previous SotA by a
large amount, while being lighter and faster. FLOPs are reported
as inference FLOPs ⇥ spatial crops ⇥ temporal clips.

backbone pretrain acc. FLOPs (G) Param
MViTv2-L Sup, IN-21K 85.8 377⇥1⇥10 218M
MViTv2-L MaskFeat 86.4 377⇥1⇥10 218M
Hiera-L MAE 88.3 413⇥3⇥5 213M
Hiera-H MAE 88.8 1159⇥3⇥5 672M

(a) Kinetics-600 video classification

backbone pretrain acc. FLOPs (G) Param
MViTv2-L Sup, IN-21K 76.7 377⇥1⇥10 218M
MViTv2-L MaskFeat 77.5 377⇥1⇥10 218M
Hiera-L MAE 80.3 413⇥3⇥5 213M
Hiera-H MAE 81.1 1159⇥3⇥5 672M

(b) Kinetics-700 video classification

Table 5. K600 and K700 results. Hiera improves over SotA by a
large margin. FLOPs reported as inference FLOPs ⇥ spatial crops
⇥ temporal clips. Approaches using extra data are de-emphasized.

2017) at a system level. We compare to MViTv2-L (Li
et al., 2022c) pretrained with MaskFeat (Wei et al., 2022)
and ViT (Dosovitskiy et al., 2021) pretrained with MAE
on video (Feichtenhofer et al., 2022; Tong et al., 2022).
Hiera-L brings large gains (+2.1%) over previous SotA (Fe-
ichtenhofer et al., 2022; Tong et al., 2022), while using
⇠45% fewer flops, being ⇠43% smaller and 2.3⇥ faster
(Fig. 3). In fact, Hiera-L significantly outperforms (+0.7%)
models one tier higher, while being 3⇥ smaller and 3.5⇥
faster. Hiera-L achieves a gain of +6.8% over the corre-
sponding MViTv2-L supervised baseline. Going one tier
up in size, Hiera-H improves performance over previous
SotA by +1.2%, establishing a new SotA for 2242 without
external data. We show similarly large improvements over
the art on K600 (+1.9%) and K700 (+2.8%) in Tab. 5, with
our H models bringing even further gains.

Something-Something-v2 (SSv2). In Tab. 6, we compare
our Hiera with the current art on SSv2 (Goyal et al., 2017b)
at a system level: MViTv2-L (Li et al., 2022c) pretrained
with MaskFeat (Wei et al., 2022) and ViT (Dosovitskiy et al.,
2021) pretrained with MAE on video (Tong et al., 2022).
When pretrained on K400, Hiera-L outperforms the runner-

backbone pretrain acc. FLOPs (G) Param
K400 pretrain
ViT-L supervised 55.7 598⇥3⇥1 304M
MViTv2-L40,312 MaskFeat 74.4 2828⇥3⇥1 218M
ViT-L MAE 74.0 597⇥3⇥2 305M
Hiera-L MAE 74.7 413⇥3⇥1 213M
Hiera-L MAE 75.0 413⇥3⇥2 213M

SSv2 pretrain
ViT-L MAE 74.3 597⇥3⇥2 305M
Hiera-L MAE 74.9 413⇥3⇥1 213M
Hiera-L MAE 75.1 413⇥3⇥2 213M
ViT-L32 MAE 75.4 1436⇥3⇥1 305M
Hiera-L32 MAE 76.5 1029⇥3⇥1 213M

Table 6. SSv2 results pretrained on Kinetics-400 and SSv2. Hiera
improves over SotA by a large margin. We report inference FLOPs
⇥ spatial crops ⇥ temporal clips.

up method MaskFeat by +0.6%, but Hiera is dramatically
more efficient, using 16 frames at 2242 resolution vs. 40
frames at 3122 resolution in MaskFeat, effectively using
3.4⇥ fewer FLOPs. When pretrained on SSv2, Hiera-L
achieves 75.1%, outperforming ViT-L pretrained with MAE,
by +0.8%, while using ⇠45% fewer flops and being ⇠43%
smaller. Our Hiera-L32 model further achieves 76.5%, SotA
among approaches trained only on SSv2.

Transferring to action detection (AVA). We evaluate trans-
fer learning of K400/K600/K700 pretrained Hiera on action
detection using AVA v2.2 dataset (Gu et al., 2018). In
Tab. 7 we compare the pretrained Hiera with SotA meth-
ods, MViTv2 with MaskFeat (Wei et al., 2022) and ViT
with MAE on video (Tong et al., 2022; Feichtenhofer et al.,
2022) at system level, and report mean average precision
(mAP). Our K400 pretrained Hiera-L outperforms an MAE
pretrained ViT-L by +2.8% and an MViTv2-L40,312 Mask-
Feat by +1.3% mAP while Hiera-L has fewer FLOPs and
parameters. Our Hiera-H outperforms an MAE pretrained
ViT-H by +3.0% mAP. We observe similar performance
improvement of the K600/K700 pretrained Hiera as well.
Specifically, the K700 pretrained Hiera-H outperforms an
MAE pretrained ViT-H by +3.2, establishing a new SotA.

6. Image Results
We first evaluate performance on IN1K and then transfer to
other image recognition, detection, and segmentation tasks.

6.1. Performance on ImageNet-1K

In Tab. 8, we perform a system-level comparison of Hi-
era trained with MAE to relevant prior work. First, we
observe that the supervised MViTv2 baselines are already
quite strong, with MViTv2-B (L) reaching 84.4 (85.3) top-1
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Future Work

Perception (multimodal) to action learning for robotics

Functional perspective: proactive conversational agent
(demo)

When and how to perform actions is key given good
perception representation

Can be formulated as a canonical robotic control problem

https://drive.google.com/file/d/1n2vb12dVGye2dqhndmupa1DMk1fABGOP/view?usp=sharing
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