Peizhen Li

Faculty of Science and Engineering Macquarie University

Feb 16, 2024

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

1 Multiscale Vision Transformers

- Multiscale Feature Hierarchies
- Multi Head Pooling Attention
- Multiscale Transformer Networks
- 2 Improved Multiscale Vision Transformers
 - Decomposed Relative Positional Embedding
 - Residual Pooling Connection
- 3 A Hierachical Vision Transformer without Bells-and-Whistles
 - Implementation Details
- 4 Reflection & Future Work

Multiscale Vision Transformers

L Multiscale Feature Hierarchies

Multiscale Feature Hierarchies

Figure: Several resolution-channel scale stages of MViT¹.

Multiscale Vision Transformers

Multiscale Feature Hierarchies

Transformer Revisit

Multiscale Vision Transformers

Multiscale Feature Hierarchies

Things to Think About

- A stack of identical blocks (Single Scale)
- Computational complexity of canonical self-attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{\tilde{d}}})V$$
 (1)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where

$$X \in \mathbb{R}^{n \times d}, Q = XW_Q, K = XW_K, V = XW_V$$

 $W_Q, W_K, W_V \in \mathbb{R}^{d \times \tilde{d}}$

Multiscale Vision Transformers

Multiscale Feature Hierarchies

Self-Attention Computational Complexity

Scales quadratically in input sequence length n

1 Calculation of
$$S = \frac{QK^T}{\sqrt{\tilde{d}}}$$
 takes $\mathcal{O}(n^2 \tilde{d})$

- 2 Exponentiation and calculation of row sum of S takes $\ensuremath{\mathbb{O}}(n^2)$
- 3 Division of each element of S with the corresponding row sum takes $\mathcal{O}(n^2)$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

4 Post-multiplication with V takes $\mathcal{O}(n^2 \tilde{d})$

- Multiscale Vision Transformers
 - Multiscale Feature Hierarchies

Motivation

- Decrease computing requirements
- A better sense of "context" at the lower resolutions guiding the processing at higher resolutions

- Multiscale Vision Transformers
 - Multiscale Feature Hierarchies

Multiscale: Step by Step

Scale stages: Transformer blocks that operates on the same scale (identical resolution and channel capacity).

stages	operators	output sizes	
data layer	stride $\tau \times 1 \times 1$	$D \times T \times H \times W$	
cube ₁	$c_T \times c_H \times c_W, D$ stride $s_T \times 4 \times 4$	$D \times \frac{T}{s_T} \times \frac{H}{4} \times \frac{W}{4}$	
scale ₂	$\begin{bmatrix} \text{MHPA}(D) \\ \text{MLP}(4D) \end{bmatrix} \times N_2$	$D \times \frac{T}{s_T} \times \frac{H}{4} \times \frac{W}{4}$	
scale ₃	$\begin{bmatrix} MHPA(2D) \\ MLP(8D) \end{bmatrix} \times N_3$	$2D \times \frac{T}{s_T} \times \frac{H}{8} \times \frac{W}{8}$	
scale ₄	$\begin{bmatrix} MHPA(4D) \\ MLP(16D) \end{bmatrix} \times N_4$	$4D \times \frac{T}{s_T} \times \frac{H}{16} \times \frac{W}{16}$	
scale ₅	$\begin{bmatrix} MHPA(8D) \\ MLP(32D) \end{bmatrix} \times N_5$	$8D \times \frac{T}{s_T} \times \frac{H}{32} \times \frac{W}{32}$	
		· □ > · 4 @ > · 4 @ > · 4 @ >	2

Multiscale Vision Transformers

Multi Head Pooling Attention

Reduce Resolution by Pooling

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Multiscale Vision Transformers

Multi Head Pooling Attention

Pooling Operator

$$\mathscr{P}(\cdot;\Theta) \tag{2}$$

(ロ) (同) (三) (三) (三) (○) (○)

where

 $\Theta := (\mathbf{k}, \mathbf{s}, \mathbf{p})$ poling kernel $\mathbf{k} \in \mathbb{R}^{k_T \times k_H \times k_W}$ stride $\mathbf{s} \in \mathbb{R}^{s_T \times s_H \times s_W}$ padding $\mathbf{p} \in \mathbb{R}^{p_T \times p_H \times p_W}$

<u>then</u>

$$\tilde{\mathbf{L}} = \left\lfloor \frac{\mathbf{L} + 2\mathbf{p} - \mathbf{k}}{\mathbf{s}} \right\rfloor + 1$$

where

$$\mathbf{L} = T \times H \times W, \ \ \tilde{\mathbf{L}} = \tilde{T} \times \tilde{H} \times \tilde{W}$$

length reduced by a factor of $s_T s_H s_W$

Multiscale Vision Transformers

Multi Head Pooling Attention

Computational Complexity

Given sequence length L = THWAfter pooling L/f_K , L/f_Q , L/f_V $f_j = s_T^j s_H^j s_W^j$, $\forall j \in \{Q, K, V\}$

Compute key, query, value embeddings

 $\Theta(THWD^2/h)$

2 Calculate attention matrix and post-multiply with value vectors

 $\mathcal{O}(T^2 H^2 W^2 D / (f_Q f_K h))$

<u>**Overall**</u> $O(THWD/h(D + THW/(f_Q f_K)))$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Multiscale Vision Transformers

L Multiscale Transformer Networks

Multiscale Transformer Networks

Channel expansion:

e.g.,
$$2D \times \frac{T}{s_T} \times \frac{H}{8} \times \frac{W}{8}$$
 to $4D \times \frac{T}{s_T} \times \frac{H}{16} \times \frac{W}{16}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Query pooling:
$$\mathscr{P}(Q; \mathbf{k}; \mathbf{p}; \mathbf{s})$$

• Key-Value pooling:
$$\Theta_K \equiv \Theta_V$$

Skip connections

Multiscale attention block

Multiscale Vision Transformers

L Multiscale Transformer Networks

Experimental Results on Kinetics-400

model	pre-train	top-1	top-5	FLOPs×views	Param
Two-Stream I3D [11]	-	71.6	90.0	$216 \times NA$	25.0
ip-CSN-152 [96]	-	77.8	92.8	$109 \times 3 \times 10$	32.8
SlowFast 8×8 +NL [30]	-	78.7	93.5	116×3×10	59.9
SlowFast 16×8 +NL [30]	-	79.8	93.9	234×3×10	59.9
X3D-M [29]	-	76.0	92.3	6.2×3×10	3.8
X3D-XL [29]	-	79.1	93.9	$48.4 \times 3 \times 10$	11.0
ViT-B-VTN [78]	ImageNet-1K	75.6	92.4	4218×1×1	114.0
ViT-B-VTN [78]	ImageNet-21K	78.6	93.7	4218×1×1	114.0
ViT-B-TimeSformer [6]	ImageNet-21K	80.7	94.7	2380×3×1	121.4
ViT-L-ViViT [1]	ImageNet-21K	81.3	94.7	3992×3×4	310.8
ViT-B (our baseline)	ImageNet-21K	79.3	93.9	180×1×5	87.2
ViT-B (our baseline)	-	68.5	86.9	180×1×5	87.2
MViT-S	-	76.0	92.1	32.9×1×5	26.1
MViT- B, 16×4	-	78.4	93.5	70.5×1×5	36.6
MViT -B, 32×3	-	80.2	94.4	170×1×5	36.6
MViT -B, 64×3	-	81.2	95.1	455×3×3	36.6

Improved Multiscale Vision Transformers

MViTv2: Improved Multiscale Vision Transformers for Classification and Detection²

- 1 Decomposed relative positional embeddings
- 2 Residual pooling connection

Improved Multiscale Vision Transformers

L Decomposed Relative Positional Embedding

Decomposed Relative Positional Embedding

$$\mathsf{Attn}(Q, K, V) = \mathsf{Softmax}\left((QK^T + E^{(\mathsf{rel})})/\sqrt{d}\right)V \qquad \textbf{(3)}$$

where

$$E_{ij}^{(\mathrm{rel})} = Q_i \cdot R_{p^{(i)}, p^{(j)}}, \ R_{p^{(i)}, p^{(j)}} \in \mathbb{R}^d$$

decompose along axes

$$R_{p^{(i)},p^{(j)}} = R_{h(i),h(j)}^{\mathsf{h}} + R_{w(i),w(j)}^{\mathsf{w}} + R_{t(i),t(j)}^{\mathsf{t}}$$
(4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Improved Multiscale Vision Transformers

L Decomposed Relative Positional Embedding

Wait...

$$e_{ij} = \frac{Q_i K_j + E_{ij}^{(rel)}}{\sqrt{d}}, \ E_{ij}^{(rel)} = Q_i \cdot R_{p(i), p(j)}$$
 (5)

VS.

$$e_{ij} = \frac{Q_i(K_j + R_{p(i),p(j)})}{\sqrt{d}}$$
 (6)

why?

- **1** Compute all (original) e_{ij} in a single matrix multiplication
- 2 Avoid broadcasting relative position representations

Improved Multiscale Vision Transformers

Residual Pooling Connection

Residual Pooling Connection

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

- L Improved Multiscale Vision Transformers
 - Residual Pooling Connection

Pooling Attention vs. Window Attention

Local aggregation then **global** self-attention computation vs. computing self-attention **locally** within non-overlapping windows

Figure: An illustration of the shifted window approach in Swin

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Improved Multiscale Vision Transformers
 - Residual Pooling Connection

Experimental Results on Kinetics-400

model	pre-train	top-1	top-5	FLOPs×views	Param
SlowFast 16×8+NL [23]	-	79.8	93.9	234×3×10	59.9
X3D-XL [22]	-	79.1	93.9	$48.4 \times 3 \times 10$	11.0
MoViNet-A6 [45]	-	81.5	95.3	386×1×1	31.4
MViTv1, 16×4 [21]	-	78.4	93.5	70.3×1×5	36.6
MViTv1, 32×3 [21]	-	80.2	94.4	$170 \times 1 \times 5$	36.6
MViTv2- S, 16×4	-	81.0	94.6	64×1×5	34.5
MViTv2- B, 32×3	-	82.9	95.7	225×1×5	51.2
ViT-B-VTN [59]		78.6	93.7	4218×1×1	114.0
ViT-B-TimeSformer [3]		80.7	94.7	2380×3×1	121.4
ViT-L-ViViT [1]	IN 21V	81.3	94.7	3992×3×4	310.8
Swin-L ⁺ 384 ² [56]		84.9	96.7	$2107 \times 5 \times 10$	200.0
MViTv2- L \uparrow 312 ² , 40×3		86.1	97.0	2828×3×5	217.6

A Hierachical Vision Transformer without Bells-and-Whistles

Are They Necessary?

Hiera: A Hierarchical Vision Transformer without Bells-and-Whistles³

Observation:

Vision-specific modules make models slower

- e.g., attention pooling, relative positional embedding
- Question:

Why should we slow down our architecture to add the spatial biases?

Hypothesis:

Use MAE pretraining to teach ViTs spatial reasoning

A Hierachical Vision Transformer without Bells-and-Whistles

Test Hypothesis on MViTv2

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A Hierachical Vision Transformer without Bells-and-Whistles

Implementation Details

Hiera Setup

Figure: Local attention within "mask units" for the first two stages and global attention for the rest

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A Hierachical Vision Transformer without Bells-and-Whistles

Implementation Details

MAE Recap

- encoder: e.g., ViT, applied to visible, unmasked patches
- decoder: lightweight, independent of the encoder design
- reconstruction target: pixel values for masked tokens

A Hierachical Vision Transformer without Bells-and-Whistles

L Implementation Details

MAE for Hierarchical Models

Figure: <u>Random</u> mask <u>units</u> rather than <u>tokens</u>

A Hierachical Vision Transformer without Bells-and-Whistles

Implementation Details

Mask Unit Attention

Figure: Mask Unit Attention performs local attention within mask units

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A Hierachical Vision Transformer without Bells-and-Whistles

Implementation Details

Simplifying MViTv2

	Image		Video	
Setting	acc.	im/s	acc.	clip/s
MViTv2-L Supervised	85.3	219.8	80.5	20.5
Hiera-L MAE				
a. replace rel pos with absolute $*$	<u>85.6</u>	253.3	<u>85.3</u>	20.7
b. replace convs with maxpools $*$	84.4	99.9 [†]	84.1	10.4^{+}
c. delete stride=1 maxpools *	85.4	309.2	84.3	26.2
d. set kernel size equal to stride	85.7	369.8	85.5	29.4
e. delete q attention residuals	<u>85.6</u>	374.3	85.5	29.8
f. replace kv pooling with MU attn	<u>85.6</u>	531.4	85.5	40.8

A Hierachical Vision Transformer without Bells-and-Whistles

Implementation Details

Experimental Results on Kinetics-400

backbone	pretrain	acc.	FLOPs (G)	Param
ViT-B	MAE	81.5	$180 \times 3 \times 5$	87M
Hiera-B	MAE	84.0	102 ×3×5	51M
Hiera-B+	MAE	85.0	<u>133</u> ×3×5	<u>69M</u>
MViTv2-L	-	80.5	377 ×1×10	<u>218M</u>
MViTv2-L	MaskFeat	84.3	377 ×1×10	<u>218M</u>
ViT-L	MAE	85.2	597×3×5	305M
Hiera-L	MAE	87.3	$\underline{413} \times 3 \times 5$	213M
ViT-H	MAE	86.6	1192×3×5	633M
Hiera-H	MAE	87.8	1159 ×3×5	672M

Reflection & Future Work

- Perception (multimodal) to action learning for robotics
- Functional perspective: proactive conversational agent (demo)
- When and how to perform actions is key given good perception representation
- Can be formulated as a canonical robotic control problem

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Reflection & Future Work

- [1] ICCV 2021 Multiscale Vision Transformers
- [2] **CVPR 2022** MViTv2: Improved Multiscale Vision Transformers for Classification and Detection
- [3] **CVPR 2022** Masked Autoencoders Are Scalable Vision Learners

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

[4] **ICML 2023** - Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

Reflection & Future Work

Thank you very much! Q&A

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●