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Emotion Recognition in Conversation

Task Formulation

Task Formulation

Given:
• a collection of speakers S,
• a set of emotion labels E,
• a conversation C, [(s1, u1), (s2, u2), · · · , (sN , uN )]

Goal: identify the emotion label at each conversation turn
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Emotion Recognition in Conversation

Dataset Specification

Datasets
Text-only:

• EmoryNLP
Multimodal:

• The Interactive Emotional Dyadic Motion Capture (IEMOCAP)
• Multimodal EmotionLines Dataset (MELD)

https://github.com/emorynlp/character-mining
https://sail.usc.edu/iemocap/
https://affective-meld.github.io/
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Key Aspects of ERC

Context Modeling and Vision Encoding

Context Modeling
To get the text embedding of t-th turn in a dialogue:

• option 1: concatenate all contextual turns (not suitable in real-time setting)
• option 2: most recent k turns + prompt

Ct = [st−k, ut−k, st−k+1, · · · , st, ut] (1)
Pt = for ut, < st > feels < mask > (2)

Ht = TextEncoder(Ct ⊕ Pt) (3)

ing framework and Bao et al. (2022) proposed a
speaker-guided encoder-decoder framework, for-
mulating the modeling of speaker interactions as a
flexible component.

2.2 Contrastive Learning
In the field of natural language processing, Sim-
CSE(Gao et al., 2021) is a state-of-the-art con-
trastive learning framework for generating sen-
tence embeddings, it can learn from unlabeled sen-
tences or annotated pairs from natural language
inference datasets. Khosla et al. (2020) extend the
self-supervised batch contrastive approach to the
fully-supervised setting to make full use of label
information. Yeh et al. (2021) let the contrastive
learning get rid of the dependence on large batch
size. CoG-BART(Li et al., 2021) adapts supervised
contrastive learning to make different emotions mu-
tually exclusive to identify similar emotions better.

3 Methodology

3.1 Definition
Given a collection of all speakers S, an emo-
tion label set E and a conversation C, our goal
is to identify speaker’s emotion label at each
conversation turn. A conversation is denoted as
[(s1, u1), (s2, u2), · · · , (sN , uN )], where si 2 S
is the speaker and ui is the utterance of i-th turn.
In this paper, we focus on the real-time settings of
ERC, in which model can only take previous turns
[(s1, u1), (s2, u2), · · · , (st, ut)] as input to predict
the emotion label yt of t-th turn.

3.2 Context Modeling
We build a prompt-based context encoder upon
SimCSE(Gao et al., 2021) to get speaker and
context-aware emotion representations. The archi-
tecture of the context encoder is illustrated in Fig-
ure 3. To calculate representation for ut, we use
the most recent k turns of utterances and speakers
as context.

Ct = [st�k, ut�k, st�k+1, ..., st, ut] (1)

Kim and Vossen (2021) indicated that it is difficult
for the pretrained language model to distinguish the
"context" (i.e., [st�kut�k · · · st�1ut�1]) and target
turn (i.e., st, ut). Inspired by prompt learning(Liu
et al., 2021), we construct a prompt for the t-th turn
as follows.

Pt = for ut, st fells <mask> (2)

Transformer-based Pretrained Language Model

Carol:..... Now go!</s>Ross:Thanks a lot</s>for  "Thanks a lot", Ross feels <mask>

context prompt

Figure 3: The architecture of our prompt-based context
encoder.

The full input of the encoder is Ct � Pt, where
� is the concatenation operation. In order to let
the encoder realize that the prompt contains the
target sentence, for the training pair of t-th turn
Xt

t = {Ct � Pt, yt}, we construct an additional
training pair Xh

t = {Ct � Ph, yh}, where h is
randomly selected from (t�k, · · · , t). Xt

t and Xh
t

shares the same context but has different prompts
and labels. Training on such data helps the model
to pay more attention to the target sentence and
generate reasonable representations.

For a training pair Xk
t , we first feed Ct�Pk into

the SimCSE model and get the last hidden states
Hk

t 2 Rl⇥d,

Hk
t = SimCSE(Ct � Pk) (3)

where l is the number of tokens in Ct�Pk, and d is
the dimension of a token embedding. Then we use
the embeddings of the special token <mask> from
Hk

t as a representation of yk-th emotion.

3.3 Supervised Prototypical Contrastive
Learning for ERC

Supervised Contrastive Learning Supervised
contrastive learning(Khosla et al., 2020) treats all
examples with the same label in the batch as pos-
itive examples. A batch of N emotion represen-
tations generated via context encoder is denoted
as I = [z1, z2, · · · , zN ]. The vanilla supervised
contrastive learning computes the loss Lsup

i for zi

as follows,

F(zi, zj) = exp(G(zi, zj)/⌧) (4)

Nsup(i) =
X

zj2A(i)

F(zi, zj) (5)

5199

EMNLP-22: Supervised Prototypical Contrastive Learning for Emotion Recognition in Conversation

https://arxiv.org/pdf/2210.08713
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Context Modeling



Embodied Real-Time Emotion Recognition in Conversation

Key Aspects of ERC

Context Modeling and Vision Encoding

Text Encoder

RoBERTa: A Robustly Optimized BERT Pretraining Approach

• How to use this model to get the features of a given text in PyTorch

from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained(’roberta-large’)
model = RobertaModel.from_pretrained(’roberta-large’)
text = "Replace me by any text you’d like."
encoded_input = tokenizer(text, return_tensors=’pt’)
output = model(**encoded_input)

# encoded_input - "input_ids": torch.size([1, 12])
# tensor([[0, 9064, 6406, 162, 30, 143, 2788, 47, 1017, 101, 4, 2]])
# output - sequence output:
# torch.size([1, 12, 1024])

https://arxiv.org/pdf/1907.11692
https://huggingface.co/FacebookAI/roberta-large
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Context Modeling and Vision Encoding

Vision Encoding

□ Video level: Timesformer
□ Frame level: ResNet

Figure credits to ACL-23: FacialMMT

https://aclanthology.org/2023.acl-long.861.pdf
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Key Aspects of ERC

Multimodal Fusion

Cross-Modal Attention
□ Latent adaptation from β to α, Yα = CMβ→α(Xα, Xβ) :

Yα = softmax
(
QαKT

β√
dk

)
Vβ

= softmax
(XαWQαW

T
Kβ

XT
β√

dk

)
XβWVβ

(4)

softmax

✓
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dk

◆
V� 2 RT��dv
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(a) Crossmodal attention CM�!↵(X↵, X�) between sequences X↵, X�

from distinct modalities.
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(b) A crossmodal transformer is a deep stack-
ing of several crossmodal attention blocks.

Figure 3: Architectural elements of a crossmodal transformer between two time-series from modality ↵ and �.

3.2 Overall Architecture
Three major modalities are typically involved in
multimodal language sequences: language (L),
video (V ), and audio (A) modalities. We de-
note with X{L,V,A} 2 RT{L,V,A}⇥d{L,V,A} the in-
put feature sequences (and the dimensions thereof)
from these 3 modalities. With these notations, in
this subsection, we describe in greater details the
components of Multimodal Transformer and how
crossmodal attention modules are applied.

Temporal Convolutions. To ensure that each el-
ement of the input sequences has sufficient aware-
ness of its neighborhood elements, we pass the
input sequences through a 1D temporal convolu-
tional layer:

X̂{L,V,A} = Conv1D(X{L,V,A}, k{L,V,A}) 2 RT{L,V,A}⇥d

(2)
where k{L,V,A} are the sizes of the convolutional
kernels for modalities {L, V, A}, and d is a com-
mon dimension. The convolved sequences are
expected to contain the local structure of the se-
quence, which is important since the sequences
are collected at different sampling rates. More-
over, since the temporal convolutions project the
features of different modalities to the same di-
mension d, the dot-products are admittable in the
crossmodal attention module.

Positional Embedding. To enable the se-
quences to carry temporal information, follow-
ing (Vaswani et al., 2017), we augment positional
embedding (PE) to X̂{L,V,A}:

Z
[0]
{L,V,A} = X̂{L,V,A} + PE(T{L,V,A}, d) (3)

where PE(T{L,V,A}, d) 2 RT{L,V,A}⇥d computes
the (fixed) embeddings for each position index,

and Z
[0]
{L,V,A} are the resulting low-level position-

aware features for different modalities. We leave
more details of the positional embedding to Ap-
pendix A.

Crossmodal Transformers. Based on the cross-
modal attention blocks, we design the crossmodal
transformer that enables one modality for receiv-
ing information from another modality. In the fol-
lowing, we use the example for passing vision (V )
information to language (L), which is denoted by
“V ! L”. We fix all the dimensions (d{↵,�,k,v})
for each crossmodal attention block as d.

Each crossmodal transformer consists of D lay-
ers of crossmodal attention blocks (see Figure
3(b)). Formally, a crossmodal transformer com-
putes feed-forwardly for i = 1, . . . , D layers:

Z
[0]
V !L = Z

[0]
L

Ẑ
[i]
V !L = CM[i],mul

V !L (LN(Z
[i�1]
V !L), LN(Z

[0]
V )) + LN(Z

[i�1]
V !L)

Z
[i]
V !L = f

✓
[i]
V !L

(LN(Ẑ
[i]
V !L)) + LN(Ẑ

[i]
V !L)

(4)
where f✓ is a positionwise feed-forward sublayer
parametrized by ✓, and CM[i],mul

V !L means a multi-
head (see (Vaswani et al., 2017) for more details)
version of CMV !L at layer i (note: d should be
divisible by the number of heads). LN means layer
normalization (Ba et al., 2016).

In this process, each modality keeps updating its
sequence via low-level external information from
the multi-head crossmodal attention module. At
every level of the crossmodal attention block, the
low-level signals from source modality are trans-
formed to a different set of Key/Value pairs to in-
teract with the target modality. Empirically, we
find that the crossmodal transformer learns to cor-
relate meaningful elements across modalities (see

ACL-19: Multimodal Transformer for Unaligned Multimodal Language Sequences

https://arxiv.org/pdf/1906.00295
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Multimodal Fusion

Cross-Modal Transformer

Given unimodal embeddings: El, Ea, Ev

• intra-modal interactions: Ha = Transformer(Ea), Hv = Transformer(Ev)

• inter-modal interactions:

Hl−a = CM-Transformer(El,Ha),

Hl−a−v = CM-Transformer(Hl−a,Hv)
(5)

• emotion classification layer:

q(y) = softmax(WTHl−a−v + b) (6)

• pseudo code:
audio_emb=audio_transformer(audio_linear(audio_inputs),audio_mask)
vis_emb=vis_transformer(vis_linear(vision_inputs),vision_mask)
ta_feat=cm_ta_transformer(text_feat, audio_emb, audio_emb)
at_feat=cm_ta_transformer(audio_emb, text_feat, text_feat)
tat_feat=torch.cat((ta_feat, at_feat)) # concatenate
vta_feat=cm_tat_transformer(vis_emb, tat_feat, tat_feat)
tav_feat=cm_tat_transformer(tat_feat, vis_emb, vis_emb)
final_feat=torch.cat((vta_feat, tav_feat))

Refer to official implementation

https://github.com/NUSTM/FacialMMT/blob/main/src/models.py
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Multimodal Fusion

Multimodal Adaptation Gate (MAG)
□ Shifting by a displacement vector: Z̄i = Zi + αHi

Hi = gai · (WaAi) + gvi · (WvVi) + bH (7)
gai = R(Wga[Zi;Ai] + ba),

gvi = R(Wgv [Zi;Vi] + bv)
(8)

Attention
Gating

Shifting

Lexical
Input

Acoustic 
Input

Visual 
Input

!" #" $"

%"

&!"

Figure 1: Multimodal Adaptation Gate (MAG) takes
as input a lexical input vector, as well as its visual and
acoustic accompaniments. Subsequently, an attention
over lexical and nonverbal dimensions is used to fuse
the multimodal data into another vector, which is sub-
sequently added to the input lexical vector (shifting).

4 Multimodal Adaptation Gate (MAG)

In multimodal language, a lexical input is accom-
panied by visual and acoustic information - simply
gestures and prosody co-occurring with language.
Consider a semantic space that captures latent con-
cepts (positions in the latent space) for individual
words. In absence of multimodal accompaniments,
the semantic space is directly conditioned on the
language manifold. Simply put, each word falls
within some part of this semantic space, depending
only on the meaning of the word in a linguistic
structure (i.e. sentence). Nonverbal behaviors can
have an impact on the meaning of words, and there-
fore on the position of words in this semantic space.
Together, language and nonverbal accompaniments
decide on the new position of the word in the se-
mantic space. In this paper, we regard to this new
position as addition of the language-only position
with a displacement vector; a vector with trajec-
tory and magnitude that shifts the language-only
position of the word to the new position in light of
nonverbal behaviors. This is the core philosophy
behind the Multimodal Adaptation Gate (MAG).

A particularly appealing implementation of such

displacement is studied in RAVEN (Wang et al.,
2018), where displacements are calculated using
cross-modal self-attention to highlight relevant non-
verbal information. Figure 1 shows the studied
MAG in this paper. Essentially, a MAG unit re-
ceives three inputs, one is purely lexical, one is
visual, and the last one is acoustic. Let the triplet(Zi,Ai, Vi) denote these inputs for ith word in a
sequence. We break this displacement into bimodal
factors [Zi;Ai] and [Zi;Vi] by concatenating lex-
ical vector with acoustic and visual information
respectively and use them to produce two gating
vectors gv

i and ga
i :

gv
i = R(Wgv[Zi;Vi] + bv) (1)

ga
i = R(Wga[Zi;Ai] + ba) (2)

where Wgv, Wga are weight matrices for visual and
acoustic modality and bv and ba are scalar biases.
R(x) is a non-linear activation function. These
gates highlight the relevant information in visual
and acoustic modality conditioned on the lexical
vector.

We then create a non-verbal displacement vector
Hi by fusing together Ai and Vi multiplied by their
respective gating vectors:

Hi = ga
i ⋅ (WaAi) + gv

i ⋅ (WvVi) + bH (3)

where Wa and Wv are weight matrices for acoustic
and visual information respectively and bH is the
bias vector.
Subsequently, we use a weighted summation be-
tween Zi and its nonverbal displacement Hi to cre-
ate a multimodal vector Z̄i:

Z̄i = Zi + ↵Hi (4)

↵ =min( �Zi�2�Hi�2�,1) (5)

where � is a hyper-parameter selected through the
cross-validation process. �Zi�2 and �Hi�2 denote
the L2 norm of the Zi and Hi vectors respectively.
We use the scaling factor ↵ so that the effect of non-
verbal shift Hi remains within a desirable range.
Finally, we apply a layer normalization and dropout
layer to Z̄i.

ACL-20: Integrating Multimodal Information in Large Pretrained Transformers

https://arxiv.org/pdf/1908.05787
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Multimodal Fusion

Attention-based Modality Shifting Fusion
□ Fusion by the displacement vector based on non-verbal information

Zk = FTk
+ λ · Hk (9)

where Hk = gk
AV · (W2 · Fk

attn + b2), gk
AV = R(W1 · [FTk

;Fk
attn] + b1)

Figure credits to: TelME

https://arxiv.org/pdf/2401.12987
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Class Imbalance

□ Emotion distribution on the training set of MELD dataset

□ Evaluation metric: weighted-F1 score

weighted-F1 =

|E|∑
i=1

wi × F1i

F1 = 2× Precision × Recall
Precision + Recall

(10)
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Class Imbalance

Supervised Contrastive Learning

□ Self-supervised contrastive loss

L
self

=
∑
i∈I

L
self
i = −

∑
i∈I

log
exp(zi · zj(i)/τ)∑

a∈A(i) exp(zi · za/τ)
(11)

□ Supervised contrastive losses

L
sup
out =

∑
i∈I

L
sup
out,i =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(12)

L
sup
in =

∑
i∈I

L
sup
in,i =

∑
i∈I

− log

{
1

|P (i)|
∑

p∈P (i)

exp(zi · zp/τ)∑
a∈A(i) exp(zi · za/τ)

}
(13)

where

i ∈ I ≡ {1 · · · 2N}, zl = Proj(Enc(x̃l)), A(i) ≡ I\{i}, P (i) ≡ {p ∈ A(i) : ỹp = ỹi}

given
{xk, yk}k=1···N , {x̃l, ỹl}l=1···2N , ỹ2k−1 = ỹ2k = yk

NeurIPS-20: Supervised Contrastive Learning

https://arxiv.org/pdf/2004.11362
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Class Imbalance

Supervised Prototypical Contrastive Learning

Issue: limited batch size + class imbalance

• representation queue for each category: Qc = [zc1, z
c
2, · · · , zcM ]

• support set by random selection: SK = RANDOMSELECT(Qc,K)

• prototype vector for each category: Tc = 1
K

∑
zcj∈SK

zcj

• supervised prototypical loss:

L
spcl
i = − log

{
1

|P (i)| + 1
·

∑
p∈P (i) F(zi, zp) + F(zi,Tyi )∑

a∈A(i) F(zi, za) +
∑

c∈E\{yi} F(zi,Tc)

}
(14)

where
F(zi, zj) = exp(G(zi, zj)/τ)

EMNLP-22: Supervised Prototypical Contrastive Learning for Emotion Recognition in Conversation

https://arxiv.org/pdf/2210.08713
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Embodiment for Humanoids

Challenges

□ Embody the multimodal emotion recognition model
— complementing it with sensor data from a robot agent

□ End-to-end training
— train on sensor data directly
— discern good features from noisy inputs

□ Real-time inference
— reference speed: minimum of 1-3 HZ
— cannot run large models directly on the robot
— backend server/cloud service: round-trip delay

Refer to: PaLM-E and RT-2

https://research.google/blog/palm-e-an-embodied-multimodal-language-model/
https://robotics-transformer2.github.io/assets/rt2.pdf
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Embodiment for Humanoids

Progress and Future Work

Progress:
• illustration of our framework
• preliminary results

Future work:
• deploy on Ameca
• collect more data and co-fine-tune

https://drive.google.com/file/d/1Wme6r4JlzWI65iLDBrfiJ51rdoFI9DA9/view?usp=sharing
https://drive.google.com/file/d/1alAAoogUVI14k4RLY2fqDPBqYi-pI4sg/view?usp=sharing
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Thank you very much!
Q&A
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